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What is dimensionality reduction? 
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Dimensionality Reduction: why? 

 Extract underlying factors 



Dimensionality Reduction: why? 

 Reduce data noise 

◦ Face recognition 

◦ Applied to image de-noising 

 

 

Image courtesy of Charles-Alban Deledalle, Joseph Salmon, Arnak Dalalyan; BMVC 2011 

Image denoising with patch-based PCA: local versus global 

 

 



Dimensionality Reduction: why? 

 Reduce the number of model parameters 

◦ Avoid over-fitting 

◦ Reduce the computational load 



Dimensionality Reduction: why? 

 Visualization 

 



Dimensionality Reduction 

 General principle:  
 Preserve “useful” information in low dimensional data 

 How to define “usefulness”? 
◦ Many 

◦ An active research direction in machine learning 

 Taxonomy 
◦ Supervised or Unsupervised 

◦ Linear or nonlinear 

 Commonly used methods: 
◦ PCA, LDA (linear discriminant analysis), local 

linear embedding and more. 

 

 

 



Outline 

 Theoretic Part 

◦ PCA explained: two perspectives 

◦ Mathematic basics 

◦ PCA objective and solution 

 Application Example 

◦ Eigen face 

◦ Handle high feature dimensionality 

 Extensions:  

◦ Kernel PCA 

 

 

 

 



PCA explained: Two perspectives 

 Data correlation and information 

redundancy  

 Signal-noise ratio maximization 



PCA explained:  Data correlation 

and information redundancy 



PCA explained:  Data correlation 

and information redundancy 
 Dependency vs. Correlation 
 Dependent is a stronger criterion 

 Equivalent when data follows Gaussian 

distribution 

 PCA only de-correlates data 

◦ One limitation of PCA 

◦ ICA, but it is more complicate 

 

 

 

 



PCA explained:  Data correlation 

and information redundancy 
 Geometric interpretation of correlation 

 



PCA explained:  Data correlation 

and information redundancy 



PCA explained:  Data correlation 

and information redundancy 
 

 



PCA explained:  Data correlation 

and information redundancy 
 Correlation can be removed by rotating 

the data point or coordinate 



PCA explained:  Signal-noise ratio 

maximization 
 

 

 

 

 Maximize 

Data matrix Data matrix 

Signal Noise 

Transform 



PCA explained:  Signal-noise ratio 

maximization 
 Keep one signal dimension, discard one 

noisy dimension 

Signal 

Noise 



PCA explained:  Signal-noise ratio 

maximization 

Signal 

Noise 



PCA explained 

 Target 

◦ 1: Find a new coordinate system which makes 
different dimensions zero correlated 

◦ 2: Find a new coordinate system which aligns 
(top-k) largest variance  

 Method 
 Rotate the data point or coordinate 

 Mathematically speaking… 

◦ How to rotate? 

◦ How to express our criterion 



Mathematic Basics 

 Mean, Variance, Covariance 

 Matrix norm, trace,  

 Orthogonal matrix, basis  

 Eigen decomposition 



Mathematic Basics 

 (Sample) Mean 

 

 

 (Sample) Variance 

 

 

 (Sample) Covariance 



Mathematic Basics 

 Covariance Matrix 

 

 

 

 

 

 



Mathematic Basics 

 Frobenius norm 

 

 

 Trace 

 

 

 

 



Mathematic Basics 

 Symmetric Matrix 

 Covariance matrix is symmetric  

 



Mathematic Basics 

 Orthogonal matrix 

 

 

 Rotation effect 

 

 



Mathematic Basics 

 Relationship to coordinate system 

◦ A point = linear combination of bases 

◦ Combination weight = coordinate  

 Each row (column) of Q = basis 

◦ Not unique 

◦ Relation to coordinate rotation 

 New coordinate  

 



Mathematic Basics 

(2,2) 

Old coordinate 

New coordinate 



Mathematic Basics 

 Eigenvalue and Eigenvector 

 

 

 Properties 

◦ Multiple solutions 

◦ Scaling invariant 

◦ Relation to the rank of A 

 

 

 

 



Mathematic Basics 

Eigen-decomposition 

 If      is symmetric  

 



PCA: solution 

 Target 1: de-correlation 

 

 

 

 

 



PCA: solution 



PCA: solution 

 Variance of each dimension 

 

 

 

 

 

 Rank dimensions according to their 

corresponding eigenvalues 



PCA: algorithm 

 1. Subtract mean  

 2. Calculate the covariance matrix 

 3. Calculate eigenvectors and eigenvalues 

of the covariance matrix 

 4. Rank eigenvectors by its corresponding 

eigenvalues 

 4. Obtain P with its column vectors 

corresponding to the top k eigenvectors 



PCA: MATLAB code 



PCA: reconstruction  

 Reconstruct x 

 

 

 Derive PCA through minimizing the 

reconstruction error 



PCA: reconstruction  

 Reighley Quotient 

 

 

 

 Solution = PCA 

 



Application: Eigen-face method 

 Sirovich and Kirby (1987) showed 

that PCA could be used on a collection of 

face images to form a set of basis 

features. 

 Not only limited to face recognition 

 Steps 

◦ Image as high-dimensional feature 

◦ PCA 

 



Application: Eigen-face method 



Application: Reconstruction 

Reconstructed from top-2 eigenvectors 



Application: Reconstruction 

 Reconstructed from top-15 eigenvectors 

 



Application: Reconstruction 

 Reconstructed from top-40 eigenvectors 

 



Application: Eigen-face method 

 From large to small eigenvalues 

Common 

Patterns 
Discriminative 

Patterns 

Noisy 

Patterns 



Eigen-face method: How to handle 

high dimensionality 
                         

  For high-dimensional data                     

can be too large 

  The number of samples is relatively small  

 

 

 

 

 



Eigen-face method: How to handle 

high dimensionality 
 1. Centralize data 

 2. Calculate the kernel matrix 

 3. Perform Eigen-decomposition on the kernel 

matrix and obtain its eigenvector 

 4. Obtain the Eigenvector of the covariance 

matrix by 

 Question? How many eigenvectors you can 

obtain in this way? 



Extension: Kernel PCA 

 Kernel Method 

 

 

 You do not have access to          but you 

know 



Extension: Kernel PCA 

 Use the same way as how we handle high-

dimensional data 


